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Figure 1: Proposed pipeline which merges pseudo labels from multiple models to form
a unified dataset with weak supervision. The final model is trained on the unified label
space.

Recent advancements in Advanced Driver Assistance Systems (ADAS) have witnessed
remarkable progress and widespread adoption in the past decade. Historically, the auto-
motive industry has been utilizing a fusion of various sensors, including lidar and radar [1].
However, drastic improvements in computer vision networks have enabled improved per-
ception, enhanced decision-making capabilities and accurate prediction of impending col-
lisions from camera inputs alone. Moreover, the application of vision based deep learning
models has enabled ADAS to learn from large datasets, improving their ability to recog-
nize and interpret complex driving scenarios [2].

While these systems have shown tremendous advancements, they face challenges in
generalizing and adapting to various traffic conditions [3]. One of the main limitations
of camera based models arises from the fact that large popular datasets used for training
these models indirectly introduces bias of location, weather and traffic patterns. Addi-
tionally, the driving conditions found in these datasets revolve around well-maintained
road infrastructure [4–7]. Changes in the environment, such as geographical locations,
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driving cultures and road infrastructure, can introduce distributional shifts [8]. These lim-
itations ultimately degrade performance and reduce potential safety risks in situations
that differ from the training data.

Several semi-supervised techniques such as pseudo labeling [9], contrastive learn-
ing [10,11], and noisy student [12] have demonstrated ways to learn a model from limited
annotations. However, these techniques have strong dependence on the initial labeled
data, sensitive to label noise and have difficulty in handling concept drift.

In this work we propose a weakly-supervised label unification pipeline with pseudo
labels to train a singular object detection model from multiple datasets. Our pipeline
architecture is illustrated in Figure 1. We initially fine-tune multiple homogeneous object
detection models on each dataset. Then the final dataset DU spanning the entire label
space is populated using pseudo labels. Labels which fall under a certain threshold are
manually checked to avoid propagating errors from the initial model. Finally we retrain
a singular object detection model on the combined label space to produce a robust model
MF invariant to domain shifts.

Label Unification Pipeline. Following the work proposed in [13], we develop a label
unification pipeline to combine N heterogeneous datasets, D1, D2, ...DN and correspond-
ing their label spaces L1, L2, ..., LN . The label spaces may consist of non-disjoint sets,
Li∩Lj ̸= ∅. These labels are merged and verified through a human operator. This process
allows us to train a single model with the union of all label spaces LU = L1 ∪L2...∪LN .

To produce LU we initially fine-tune multiple detectors M1,M2, ...,MN on each
dataset. The architecture of the model used remains the same. Each model populates
the other N − 1 datasets with pseudo labels above a certain threshold. We do not adopt
the custom loss function proposed in [13], instead labels which fall under the threshold
are flagged and passed to a verification process where a human annotator validates the
true label. We use the Intel Geti tool for visual inspection.

Dataset. To demonstrate that our model can work in adverse road environments, we
choose to gather road facing images from countries across Asia. For object detection we
chose to work with the Indian Driving Dataset (IDD) [14] and Road Damage Dataset
(RDD) [15–17]. Additionally we manually procure a dataset containing over 2600 ten
second video clips recorded at the occurrence of a collision avoidance alert triggered by
a Mobileye 8 Connect device.

Manual Alert Data. No public datasets consisting of Collision Avoidance Alert (CAS)
alert metadata and scene frames are available for grading these alerts. To address this
issue we develop a custom dataset that contains a diverse set of real-world driving scenes
with various road types and collision scenarios. We generated over 2600 forward and
pedestrian collision warnings across the city of Bangalore with varying lighting conditions.

We use the Mobileye 8 Connect system which is a popular choice for numerous personal
and commercial vehicles globally. This device is an advanced automotive vision-based
platform designed to enhance road safety.

Experiments. In this study we use two training procedures, one for training the object
detection model and the other for weather classification. Our experiments were conducted
on a system containing an Intel Core i5-9600K CPU paired with two Nvidia RTX 3060
GPUs with a total of 24GB of VRAM.
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Model Training
F1 Per Label

mAP (%)
All A TS M R P C Car VF

YoloX S 0.42 0.49 0.19 0.45 0.38 0.24 0.69 .55 0.04 0.32
ATSS S 0.61 0.73 0.53 0.62 0.55 0.50 0.79 0.72 0.24 0.54
SSD S 0.40 0.40 0.01 0.48 0.37 0.18 0.56 0.53 0.06 0.28

Yolov8 S 0.60 0.75 0.73 0.69 0.68 0.54 0.80 0.79 0.32 0.65
Yolov8* SSL 0.77 0.85 0.82 0.79 0.75 0.69 0.89 0.83 0.42 0.78

Table 1: Training results on the four different object detection networks. * Indicates the
model trained on pseudo labeled dataset. Please see text for more details on the training
sets and the baselines.

Class Precision Recall mAP50 mAP50-95

all 0.887 0.677 0.808 0.613
A 0.927 0.785 0.886 0.738
TS 0.887 0.766 0.866 0.657
M 0.892 0.711 0.839 0.614
R 0.907 0.638 0.796 0.574
P 0.840 0.585 0.744 0.521
C 0.896 0.874 0.91 0.689
CA 0.887 0.772 0.866 0.708
VF 0.857 0.281 0.554 0.404

Table 2: Validation results of the chosen Yolov8 model (MF ) after training on pseudo
labels.

We train and compare performance across four popular object detection networks,
namely YoloX [18], Adaptive Sample Selection Training (ATSS) [19], Single Shot Multi-
Box Detector (SSD) [20]. We used a batch size of 64, learning rate of 0.01, weight
decay of 0.005 and trained our models for 50 epochs. The models are trained using the
combination of Binary Cross Entropy, Bounding Box Loss and Dual Focal Loss.

We compare the class wise F1 scores and the mean average precision (mAP) on the
training set across all four networks in Table 1. Of the four networks, the Yolov8 model
performs significantly better than the rest. This model was then trained again on a label
unified dataset using pseudo labels with manual verification on less confident predictions.
We present the final validation set class-wise results in Table 2.

Conclusion. In this work we demonstrated the effectiveness of our weakly-supervised
pseudo labeling pipeline in handling data distribution shifts. Our work can positively
influence the accuracy of downstream ADAS tasks such as Collision Avoidance Alerts in
areas with poor road infrastructure. In future work, we aim to demonstrate the capability
of this pipeline for other computer vision tasks such as classification and segmentation.
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